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Outline

e | FM-helio introduction

* Recent work highlights: Time-dependent MHD
modeling

- Quiet heliosphere
- Propagation of coronal mass gjections
» Conclusions

» Future directions and implications for CCMC
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LFM-mag LFM-helio

* LFM — MHD code developed by J. Lyon, J.

/,(_e..\\;’; Fedder and C. Mobarry at NRL in the 80’s
?& o * Mainly applied to terrestrial magnetosphere;
> modified for inner heliosphere (Merkin et al.,
~ FBtDipole)_znT 2011, 20164, 2016b; Pahud et al, 2012);
regional plasma problems (Merkin et al.,
2015)
LFM-helio e .
w“'—“‘"‘"""/, I Very low-diffusion numerical scheme (8th
' order TVD)

* Adapted static mesh (Arbitrary hexahedral)
and finite volume technique

* Generalized grid geometries and boundary

conditions

* Magnetic field divergence-less to roundoff
(V-B=0)

* Fully parallelized

» Rotating/inertial frame calculations

e Full 3-D, poles included
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Two types of time-dependent modeling

IVI,cm/s

Je+07 8e+07

Background solar wind

Improve specification and
prediction during quiet
conditions

Improve background for CME
propagation

Heliospheric consequences of
transient changes on the sun,

e.g., moving coronal hole LFM-helio
boundaries

Complexity of heliospheric T T —

current sheet /N shatten|Cufrrght/

N\ SheetModel | / /S

Sources of slow wind

Merkin et al., JGR, [2016]
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Two types of time-dependent modeling

IVI,cm/s

36407 86107

- CME propagation
- Space weather impacts

Basic plasma physics
(instabilities, reconnection/
erosion)

Kinematics, distortion,
rotation

Internal magnetic structure
- Shocks, particle acceleration

Merkin et al., Apd, [2016]

Lionello et al., Apd, 2013
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Time-dependent quiet
neliosphere




Coronal boundary

ADAPT/WSA — 1 d cadence
@ 0.1AL

« ADAPT: Air force data

assimilative photospheric flux
transport model

Latitude

* Provides time-dependent
iInputs into MHD models of
the solar wind

* Major problem: Radial
magnetic field boundary
condition should guarantee

V-B=0

Latitude

0 20 40 60 80 100 120 140

Longitude

CCMC Workshop, Annapolis, MD, April 11-15, 2016 Merkin et al., JGR, [2016]




Radial magnetic field boundary condition

ADAPT/WSA — 1 d cadence
@ 0.1AL

Helmholtz Theorem on a sphere
(e.q., Backus, 1989):

E, =V, X f\Ier%I)
‘ Assumption 1

0B
AW =|——
J_

From ADAPT/WSA

(0 B @)
(B o) B¢

Longitude Assumption 2
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Time-dependent quiet heliosphere

« Jan-Feb 2008 - very quiet conditions e HCS moves around
« Compare results with ACE, STEREO A/B, e Transient SW velocity streams
MESSENGER » Complex HCS crossings/transitions
 Calculations in rotating frame: SCs move
eastward 28M cell simulation @ NCAR/Yellowstone
Brand Vi@ 1 AU nand T@ 1 AU
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Time-dependent quiet heliosphere

e Jan-Feb 2008 - very quiet conditions « HCS moves around

* Compare results with ACE, STEREO A/B, e Transient SW velocity streams
MESSENGER « Complex HCS crossings/transitions

e Calculations in rotating frame: SCs move
eastward ®ACE @STEREO A ©STEREO B @MESSENGER

Brand Vi@ 1 AU
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Where time-dependence matters
STEREO B
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2008:01:25 05:07

HCS and the
equatorward
boundary of the
southern coronal
hole moved

southward over
the course of
January 2008




Spacecraft skimming HCS

STEREO B
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2008:01:25 05:07

1 AU spacecraft
skimming the
HCS




Field reversals In pseudo-streamers

2008:01:15 11:34

1 1 I I 1 I I

* [slands of opposite field
polarity in pseudo 50 | 1

streamer regions are due e o6~
to inverted field lines > Of o oy

* Intrinsically, a time-
dependent process

-50 -

 These, in turn, are created
by plasma parcels of
varying speed that are fed Time: 302.11 h
iInto the same field line at
the base of the simulation

Inner boundary and field lines colored by plasma speed

> "jr

e This is due to the field line
footpoint being in the
vicinity of high/slow speed
flow boundary which
moves with time

- . Vr (cm/s)
* This is in agreement with . b7 e

statistical observations by , _ - o
Owens et al. [2013] 4e+07 8e+07
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CME propagation

Strategy: Apply high-fidelity codes best suited to simulation of
their corresponding domains
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Coupling LFM-helio with MAS coronal MHD model

Lower edge of
heliospheric active * LFM uses 8th order

domain (~20 Ro) scheme — need ghost

/ | FM domain region 4 cells deep.
} N\

* LFM grid can be designed
to overlap its inner
boundary ghost region
with the outer portion of
the MAS coronal grid.

* Interpolation in the ghost
region Is necessary to
keep the two grids
arbitrary and independent.

Coronal domain
active cells

<

 Variables are staggered
differently between the two
grids. Need to interpolate
chost  Act In radial and angular
: (0 153 clive . .
MAS domain elle oolls directions.
| < a >
Heliospheric domain
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Testing bounaary

iNnterface

e Radial magnetic field,
BAt), at the boundary

between MAS and LFM
codes

e All variables, including B,
propagate through the
boundary seamlessly

e Boundary intertace
performs with very high
accuracy
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CME propagation

Azimuthally symmetric test (Lionello et al., 2013).
Matching initial states.
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CME propagation

Azimuthally symmetric test (Lionello et al., 2013).
Matching initial states.
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CME propagation

Azimuthally symmetric test (Lionello et al., 2013).
Matching initial states.
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CME propagation
Azimuthally symmetric test. t=20 h. Polar magnetic field.
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CME propagation

Azimuthally symmetric test. t=20 h. Polar magnetic field.
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CME propagation

Realistic simulation. Rotation included. Asymmetric background.

Bz, nT V (km/s)
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Time: 6C

CCMC Workshop, Annapolis, MD, April 11-15, 2016



Conclusions

« Performed time-dependent heliosphere
simulations using two approaches

 Quiet time-dependent heliosphere was
simulated using ADAPT/WSA to drive
LFM-helio

« For CME propagation we coupled LFM-
helio to MAS |
e MAS-LFM-helio:
« ADAPT/WSA-LFM-helio:
Achieved virtually identical

Time-dependent modeling allowed background states

for more accurate prediction of high-

speed streams at Earth and helped - With a propagating flux rope, the
interpret complex HCS crossings at solutions diverge at larger heliospheric
MESSENGER and 1 AU distances but increasing resolution

| | leads to converging solutions
Inverted field lines can be generated

In pseudo streamer regions - Performed realistic simulations with

non-symmetric background and solar
rotation

HCS corrugation caused by SW
velocity gradients

CCMC Workshop, Annapolis, MD, April 11-15, 2016 ) Ensemble modeling the way to go



Future

« Step-change in simulation resolution. MHD instabilities are likely
currently suppressed due to coarseness of simulation grids.
Removed by 2 orders of magnitude from ion scales.

. More realistic CME simulations.

 Include new physics: multi-fluid for ion species; two-temperature
plasma; turbulent heating; pick-up ions.

« Ensemble modeling the way to go

 (Cleaning up the code base, boundary interfaces, user interface —
ultimate goal — transition to CCMC — requires resources.

e Streamline common LFM code base between different applications —
useful for developers, internal users, external users (CCMC),
therefore, the community.
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packup



Hellospheric current sheet corrugation

8-point Gaussian
smoothing

applied to Br only

8-point Gaussian
smoothing

apphed to Br and Vr

HCS corrugation at 1 AU

H:ﬁf is caused by solar wind

velocity shears
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